British Museum blog

Scientific investigation of the Norwich shroud

Janet Ambers, Scientist, British Museum

Research Fellow Emma Passmore taking UV images of the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Research Fellow Emma Passmore taking UV images of the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

    This is the latest in a series of posts about the unfolding of the Norwich shroud, a joint project between the British Museum and Norwich Castle Museum and Art Gallery

With the shroud unfolded for the first time (although still in need of much conservation attention) David Saunders, Keeper of Conservation and Scientific Research, Emma Passmore, Mellon Research Fellow, Caroline Cartwright, scientist, and I made our first visit to see what had been revealed on the inner surface.

David has a longstanding interest in the use of imaging techniques to enhance and investigate painted surfaces, and our main objective was to examine areas where text has been applied.

Using specialist cameras, we took both infrared and ultraviolet images of the shroud. Infrared reflectography is often employed in research into paintings to reveal initial sketches under the final images. For the shroud, it will make the black text clearer. This will help John Taylor with his interpretation of the hieroglyphs while the conservators continue to treat the shroud, and also allow the hieroglyphs to be published clearly for international scholars.

Imaging with ultraviolet light may help to show surface coatings and stains. Both of these approaches are very useful for objects like this as they provide information without the need for sampling, or indeed for any contact with the surface at all.

Caroline Cartwright, who specialises in fibre identification (amongst other things), took tiny samples of the linen ground (approximately two to three millimetres long) both with and without pigment.

Examining them under the scanning electron microscope (SEM) allowed her to positively identify the fibres as linen, and give the conservators information about their construction and condition.

SEM image of a fragment of the Norwich shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

SEM image of a fragment of the Norwich shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

The images here clearly show the weave of the textile, the twist direction of the fibres, and pigment sitting on the surface of the linen fibres (which appears white under the SEM). It also shows how few breaks there are in each fibre, confirming their good condition, and how surprisingly clean they are, suggesting the shroud may have been kept mostly in a folded state, and/or not extensively disturbed, be it by repeated opening and folding, handling, study or display.

SEM image of linen fibres from the Norwich shroud. The lack of tears in the individual fibres confirms what good condition they are in. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

SEM image of linen fibres from the Norwich shroud. The lack of tears in the individual fibres confirms what good condition they are in. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

My main role is to identify the pigments used. To enable me to do this Melina Plottu, our textile conservation intern from France, collected samples of the various pigments. She removed tiny pieces of single fibres with traces of colour on and placed them between two slides. I took these back to our laboratories and examined them under the microscope of a Raman spectrometer.

Textile conservation intern Melina Plottu carefully places a sample of linen with traces of colour on it into a glass vial held by scientist Janet Ambers.  © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Textile conservation intern Melina Plottu carefully places a sample of linen with traces of colour on it into a glass vial held by scientist Janet Ambers. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

This equipment uses changes in the wavelength of a laser beam shone on to a material to provide an absolute identification.

Raman showed that both the light and the dark black pigments are based on carbon. There is a possibility that crushed charcoal was used for this, but the most common Egyptian black ink is known to have been produced using soot (sometimes called carbon black in the art world).

Why some areas of black text on the shroud are much lighter than others is not yet clear. The colour in the red ink comes from hematite, an iron oxide. This is responsible for the colour of red ochre, a form of red coloured earth extensively found throughout Egypt and frequently used as a pigment in Egyptian art.

Taking a sample from the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Taking a sample from the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Melina and Monique Pullan, the textile conservator leading the conservation, have also found a single area of white pigment, used around the area of a cartouche in the centre of the shroud. This proved to be gypsum, a white mineral common in Egypt.

Wall painting from the eighteenth dynasty tomb chapel of Nebamun. The skin of the central seated figure and male slave are coloured with red ochre © Trustees of the British Museum

Wall painting from the eighteenth dynasty tomb chapel of Nebamun. The skin of the central seated figure and male slave are coloured with red ochre © Trustees of the British Museum

The conservators were reassured to know it wasn’t huntite, another white mineral sometimes used as a pigment in Egypt – its sensitivity to moisture would have precluded many of the water based treatments used to relax and realign fragile fibres.

Filed under: Conservation, Norwich shroud

One Response - Comments are closed.

  1. Dan says:

    I love the electron microscope pictures!

    Like

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 14,402 other followers

Categories

Follow @britishmuseum on Twitter

British Museum on Instagram

Nakamura Hikaru represents the most recent generation of manga artists and is currently the seventh bestselling manga artist in Japan. Fusing everyday life with youth culture and cutting-edge production techniques, her work in this display imagines the comical existence of Jesus and Buddha as flatmates in Tokyo.

See this, alongside two other contemporary manga artworks in our new free display: #MangaNow

#japan #manga #jesus #buddha #tokyo #art

Nakamura Hikaru (b. 1984), Jesus and Buddha drawing manga. Cover artwork for Saint Oniisan vol. 10. Digital print, hand drawn with colour added on computer, 2014. © Nakamura Hikaru/Kodansha Ltd. The second generation of contemporary manga in our free #MangaNow display is represented by Hoshino Yukinobu, one of Japan’s best-known science fiction manga artists. This is a portrait of his new character: Rainman.

Hoshino Yukinobu’s 'Professor Munakata’s British Museum Adventure' featured in a similar display in 2011.  #japan #manga #rainman #art

Hoshino Yukinobu (b. 1954), Rainman. Ink on paper, 2015. © Hoshino Yukinobu. Our free display ‪#‎MangaNow is now open! It features three original artworks that show how the medium has evolved over generations, revealing the breadth and depth of manga in Japan today.

This is an original colour drawing of a golfer on a green by prominent and influential manga artist Chiba Tetsuya. He is a specialist of sports manga that relate a young person’s struggle for recognition through dedication to sport.

#japan #manga #golf #art 
Chiba Tetsuya (b. 1939), Fair Isle Lighthouse Keepers Golf Course, Scotland. Ink and colour on paper, 2015. Loaned by the artist. © Chiba Tetsuya. This is the Codex Sinaiticus, the world’s oldest surviving Bible. It’s a star loan from @britishlibrary in our forthcoming #EgyptExhibition and dates back to the 4th century AD. 
Handwritten in Greek, not long after the reign of the Roman emperor Constantine the Great (AD 306–337), it contains the earliest complete manuscript of the New Testament. 
The codex will be displayed alongside two other founding texts of the Hebrew and Muslim faiths: the First Gaster Bible, also being loaned by @britishlibrary, and a copy of the Qur’an from @bodleianlibs in Oxford. These important texts show the transition of Egypt from a world of many gods to a majority Christian and then majority Muslim society, with Jewish communities periodically thriving throughout.  #Egypt #history #bible #faith #onthisday in 31 BC: Cleopatra and Mark Antony were defeated by Octavian at the Battle of Actium. After the death of Cleopatra, Egypt was brought into the Roman Empire and the ancient Egyptian gods, such as the falcon god Horus shown here, were reimagined in Roman dress to establish the new authority. 
Discover how Egypt’s religious and political landscape was transformed over 12 centuries in our #EgyptExhibition, opening 29 October 2015.

#history #ancientEgypt #Cleopatra #RomanEmpire New exhibition announced: ‘Egypt: faith after the pharaohs’ opens 29 October 2015

Discover Egypt’s journey over 1,200 years, as Jews, Christians and Muslims transformed an ancient land. From 30 BC to AD 1171, #EgyptExhibition charts the change from a world of many gods to the worship of one God.

Tickets now on sale at britishmuseum.org/egypt

#egypt #history #faith
Follow

Get every new post delivered to your Inbox.

Join 14,402 other followers

%d bloggers like this: