British Museum blog

Scientific investigation of the Norwich shroud

Janet Ambers, Scientist, British Museum

Research Fellow Emma Passmore taking UV images of the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Research Fellow Emma Passmore taking UV images of the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

    This is the latest in a series of posts about the unfolding of the Norwich shroud, a joint project between the British Museum and Norwich Castle Museum and Art Gallery

With the shroud unfolded for the first time (although still in need of much conservation attention) David Saunders, Keeper of Conservation and Scientific Research, Emma Passmore, Mellon Research Fellow, Caroline Cartwright, scientist, and I made our first visit to see what had been revealed on the inner surface.

David has a longstanding interest in the use of imaging techniques to enhance and investigate painted surfaces, and our main objective was to examine areas where text has been applied.

Using specialist cameras, we took both infrared and ultraviolet images of the shroud. Infrared reflectography is often employed in research into paintings to reveal initial sketches under the final images. For the shroud, it will make the black text clearer. This will help John Taylor with his interpretation of the hieroglyphs while the conservators continue to treat the shroud, and also allow the hieroglyphs to be published clearly for international scholars.

Imaging with ultraviolet light may help to show surface coatings and stains. Both of these approaches are very useful for objects like this as they provide information without the need for sampling, or indeed for any contact with the surface at all.

Caroline Cartwright, who specialises in fibre identification (amongst other things), took tiny samples of the linen ground (approximately two to three millimetres long) both with and without pigment.

Examining them under the scanning electron microscope (SEM) allowed her to positively identify the fibres as linen, and give the conservators information about their construction and condition.

SEM image of a fragment of the Norwich shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

SEM image of a fragment of the Norwich shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

The images here clearly show the weave of the textile, the twist direction of the fibres, and pigment sitting on the surface of the linen fibres (which appears white under the SEM). It also shows how few breaks there are in each fibre, confirming their good condition, and how surprisingly clean they are, suggesting the shroud may have been kept mostly in a folded state, and/or not extensively disturbed, be it by repeated opening and folding, handling, study or display.

SEM image of linen fibres from the Norwich shroud. The lack of tears in the individual fibres confirms what good condition they are in. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

SEM image of linen fibres from the Norwich shroud. The lack of tears in the individual fibres confirms what good condition they are in. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

My main role is to identify the pigments used. To enable me to do this Melina Plottu, our textile conservation intern from France, collected samples of the various pigments. She removed tiny pieces of single fibres with traces of colour on and placed them between two slides. I took these back to our laboratories and examined them under the microscope of a Raman spectrometer.

Textile conservation intern Melina Plottu carefully places a sample of linen with traces of colour on it into a glass vial held by scientist Janet Ambers.  © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Textile conservation intern Melina Plottu carefully places a sample of linen with traces of colour on it into a glass vial held by scientist Janet Ambers. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

This equipment uses changes in the wavelength of a laser beam shone on to a material to provide an absolute identification.

Raman showed that both the light and the dark black pigments are based on carbon. There is a possibility that crushed charcoal was used for this, but the most common Egyptian black ink is known to have been produced using soot (sometimes called carbon black in the art world).

Why some areas of black text on the shroud are much lighter than others is not yet clear. The colour in the red ink comes from hematite, an iron oxide. This is responsible for the colour of red ochre, a form of red coloured earth extensively found throughout Egypt and frequently used as a pigment in Egyptian art.

Taking a sample from the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Taking a sample from the shroud. © Norwich Castle Museum and Art Gallery / Trustees of the British Museum

Melina and Monique Pullan, the textile conservator leading the conservation, have also found a single area of white pigment, used around the area of a cartouche in the centre of the shroud. This proved to be gypsum, a white mineral common in Egypt.

Wall painting from the eighteenth dynasty tomb chapel of Nebamun. The skin of the central seated figure and male slave are coloured with red ochre © Trustees of the British Museum

Wall painting from the eighteenth dynasty tomb chapel of Nebamun. The skin of the central seated figure and male slave are coloured with red ochre © Trustees of the British Museum

The conservators were reassured to know it wasn’t huntite, another white mineral sometimes used as a pigment in Egypt – its sensitivity to moisture would have precluded many of the water based treatments used to relax and realign fragile fibres.

Filed under: Conservation, Norwich shroud

One Response - Comments are closed.

  1. Dan says:

    I love the electron microscope pictures!

    Like

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 13,560 other followers

Categories

Follow @britishmuseum on Twitter

British Museum on Instagram

Happy birthday to Bob Dylan! Here’s a portrait of the legendary musician by David Oxtoby.
#music #portrait #art It’s #WorldTurtleDay! This early Greek coin with a sea-turtle was part of an important trading currency.
#coin #turtle #history Born #onthisday in 1859: Sir Arthur Conan Doyle. Here’s his application to study at the Reading Room.
All prospective users of The British Museum Library had to apply in writing, stating their reasons for study there. At the time he applied for a reader's ticket, Arthur Conan Doyle was already well-known as the creator of the great detective Sherlock Holmes, but he had not yet given up his work as a doctor, and in this letter of application he gives his occupation as 'physician'.
As well as his detective stories, Conan Doyle wrote many historical novels. At the time he wrote this letter he was probably carrying out research for his novel The White Company, which is set at the time of the Thirty Years' War (1618-48) in Europe.
#author #library #museum #BritishMuseum #history Mary Anning was born #onthisday in 1799, one of the most famous fossil finders of her day. This large skull and lower jaw of an ichthyosaur was found by her at Lyme Regis in Dorset in 1821. You can see it on display in the Enlightenment Gallery (Room 1), on loan from the @natural_history_museum.
© 2003 The Natural History Museum.
#history #fossil #dinosaur Albrecht Dürer was born  #onthisday in 1471. Here’s his wonderful drawing of a woman from 1520.
This study is drawn with a brush in black and greybodycolour. The light is strongly shown by white heightening when it falls onto the woman's face and hair. The light falls down the exact centre of her face. On the left, only the protruding eyelid and cheek bone catch the light. Her eyes are closed and her head centred, its outline strongly marked by black line and silhouette.
By 1520, the date of this drawing, Dürer was deeply interested in the ideal, human form. He had made numerous life studies, both male and female. He had also travelled to Italy and studied classical sculptures and their proportions. For Dürer, the chief purpose of these theoretical studies was to discover the mathematical proportions of the ideal human body. These he would then use in his paintings (portraits, altarpieces and images of saints) and prints. 
#Dürer #art #drawing #history The Enlightenment Gallery in the Museum (Room 1) shows how people saw the world in the 18th century.
The #Enlightenment was an age of reason and learning that flourished across Europe and America from about 1680 to 1820. This rich and diverse permanent exhibition uses thousands of objects to demonstrate how people in Britain understood their world during this period. It is housed in the King’s Library, the former home of the library of King George III.
Objects on display reveal the way in which collectors, antiquaries and travellers during this great age of discovery viewed and classified objects from the world around them.
#BritishMuseum #history #art #museum #gallery
Follow

Get every new post delivered to your Inbox.

Join 13,560 other followers

%d bloggers like this: