British Museum blog

A closer look at what the Chiseldon cauldrons are made of

High magnification image of one of the cauldrons

Quanyu Wang, scientist, British Museum

I am a scientist specialising in metalworking technology, particularly in relation to non-precious metals such as iron and copper-alloys. The scientific examination and analysis of the Chiseldon Iron-Age cauldrons is a key aspect of the investigative process as a whole and is crucial in supporting our understanding of them.

For the Chiseldon cauldrons I have been examining the microstructure of the metal under very high magnification in order to see its composition, deduce how it was worked and explore manufacturing techniques. Some of the questions I will be trying to answer include: ‘How were the cauldrons made?’, ‘Were different components from an individual vessel made in the same workshop?’, ‘Were the same parts, such as the iron handles for different vessels, made from the same metal stocks’ and, perhaps the most important question of all; ‘Were the cauldrons made especially for burial or collected together for a particular occasion?’

Taking a sample from one of the cauldrons

Taking a sample from one of the cauldrons

Finding appropriate samples to test can be extremely difficult as the metal, particularly the iron, is extremely corroded and very fragile. The sampling process is made additionally complicated by attempting to sample a potential area that is as discrete as possible to make sure that we do not endanger the structural integrity of the artefact but will yield the best results. This is not a decision that is taken lightly and sample positions are chosen in consultation with curators and conservators. In order to reveal the structure of the metal the samples are mounted in resin, their cross-section polished, and then examined using metallographic microscopy up to x1000 magnification and a scanning electron microscope equipped with energy dispersive X-ray spectrometry (SEM-EDX) that allows us to examine them up to 300,000 times its actual size.

We have been able to deduce that the iron handles from both the cauldrons studied so far were probably formed by repeatedly hammering an iron bar while it was rotated. Additionally, iron used for the same parts of different cauldrons showed differences in microstructure and slag (impurity) inclusions, and was therefore from different stocks of metal, suggesting that these cauldrons were probably collected together rather than being made at the same time specifically for burial.

A high magnification scanning electron microscope (SEM) image of a copper alloy sample from one of the cauldrons. Darker horizontal lines were caused by many cycles of working and heating

A high magnification scanning electron microscope (SEM) image of a copper alloy sample from one of the cauldrons. Darker horizontal lines were caused by many cycles of working and heating

The copper-alloy is likely to have been subjected to many cycles of working and annealing (heating) to reduce the sheet metal to its final thickness (and shape). Significantly, there are differences in the content of sulphide within the copper alloy from one of the cauldrons, which suggest that the metal of the bowl and that of the band were probably refined to different levels or were from different sources.

Some of the results we have achieved so far are intriguing and much more revealing than expected given the condition of the material. Further analysis of the remaining cauldrons will not only provide further details of how the metal was processed and how the cauldrons were made but will help us build up a more complete picture of the deposit as a whole.

The Chiseldon cauldrons research project is supported by the Leverhulme Trust

Find out more about this research project

If you would like to leave a comment click on the title

Filed under: Archaeology, Chiseldon cauldrons, Conservation, Research

One Response - Comments are closed.

  1. John Winterburn says:

    Some great images , thanks for posting these.

    Like

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 9,226 other followers

Categories

Follow @britishmuseum on Twitter

British Museum on Instagram

Horatio Nelson died #onthisday in 1805 at the Battle of Trafalgar. This commemorative medal was intended for presentation to the men who fought under Nelson at Trafalgar, with 19,000 struck in copper, of which 14001 were distributed.
#history #medal #trafalgar #nelson Dutch artist Aelbert Cuyp was born #onthisday in 1620. He seemed to be very fond of cows! The Sydney Opera House opened #onthisday in 1973.

Designed by the Danish architect Jørn Utzon, the Sydney Opera House provoked fierce public controversy in the 1960s as much over the escalating cost of its construction as the innovative brilliance of its domed sail-like halls. Now recognised the world over as a magnificent architectural icon jutting into Sydney Harbour, the Sydney Opera House finally opened in 1973. 
In this Christmas card for 1972 Eric Thake (1904–1982) cheekily anticipates the long awaited opening with his domestic version of the grand architectural statement. Crockery stacked in a drying rack forms the shape of the Sydney Opera House, with water from the kitchen sink adjacent. The small housefly resting on one of the stacked plates adds an unmistakably Australian touch.

Text from Stephen Coppel’s 'Out of Australia: Prints and Drawings from Sidney Nolan to Rover Thomas'
#art #architecture #sydneyoperahouse #sydney #print Born #onthisday in 1632: architect Sir Christopher Wren. Here’s a freehand drawing showing the relationship of the domes of the new St Paul’s Cathedral
#history #architecture #stpauls #London #art Room 4, Egyptian sculpture, is the next gallery in our #MuseumOfTheFuture series. The objects in this gallery range in date from 2600 BC to the 2nd century AD. Large-scale sculpture was an important feature of the great temples and tombs of ancient Egypt and was believed to be imbued with powerful spiritual qualities. Sculptures on display in Room 4 include stylised depictions of kings, deities and symbolic objects ranging from the time of the Old Kingdom to the middle of the Roman Period. There are also architectural pieces from temples and tombs.
An imposing stone bust of the great pharaoh Ramesses II presides over the room, while the world-famous Rosetta Stone (in the foreground of this pic), with its inscribed scripts, demonstrates how Egypt’s ancient form of pictographic writing was deciphered for the first time.
#museum #art #sculpture #history #ancientegypt #egypt #hieroglyphs Next in our #MuseumOfTheFuture series looking at all the galleries in the British Museum, it's Room 3. Since 2005 this room has housed a series of temporary displays – The Asahi Shimbun Displays. Usually focused on one object (although sometimes featuring several), it provides a space in which to experiment with display and interpretation. Displays have featured everything from ancient African hand tools to contemporary art, from Old Masters to manga. The current display (pictured) features an enormous print by Albrecht Dürer.
#museum #art #history
Follow

Get every new post delivered to your Inbox.

Join 9,226 other followers

%d bloggers like this: