British Museum blog

A closer look at what the Chiseldon cauldrons are made of

High magnification image of one of the cauldrons

Quanyu Wang, scientist, British Museum

I am a scientist specialising in metalworking technology, particularly in relation to non-precious metals such as iron and copper-alloys. The scientific examination and analysis of the Chiseldon Iron-Age cauldrons is a key aspect of the investigative process as a whole and is crucial in supporting our understanding of them.

For the Chiseldon cauldrons I have been examining the microstructure of the metal under very high magnification in order to see its composition, deduce how it was worked and explore manufacturing techniques. Some of the questions I will be trying to answer include: ‘How were the cauldrons made?’, ‘Were different components from an individual vessel made in the same workshop?’, ‘Were the same parts, such as the iron handles for different vessels, made from the same metal stocks’ and, perhaps the most important question of all; ‘Were the cauldrons made especially for burial or collected together for a particular occasion?’

Taking a sample from one of the cauldrons

Taking a sample from one of the cauldrons

Finding appropriate samples to test can be extremely difficult as the metal, particularly the iron, is extremely corroded and very fragile. The sampling process is made additionally complicated by attempting to sample a potential area that is as discrete as possible to make sure that we do not endanger the structural integrity of the artefact but will yield the best results. This is not a decision that is taken lightly and sample positions are chosen in consultation with curators and conservators. In order to reveal the structure of the metal the samples are mounted in resin, their cross-section polished, and then examined using metallographic microscopy up to x1000 magnification and a scanning electron microscope equipped with energy dispersive X-ray spectrometry (SEM-EDX) that allows us to examine them up to 300,000 times its actual size.

We have been able to deduce that the iron handles from both the cauldrons studied so far were probably formed by repeatedly hammering an iron bar while it was rotated. Additionally, iron used for the same parts of different cauldrons showed differences in microstructure and slag (impurity) inclusions, and was therefore from different stocks of metal, suggesting that these cauldrons were probably collected together rather than being made at the same time specifically for burial.

A high magnification scanning electron microscope (SEM) image of a copper alloy sample from one of the cauldrons. Darker horizontal lines were caused by many cycles of working and heating

A high magnification scanning electron microscope (SEM) image of a copper alloy sample from one of the cauldrons. Darker horizontal lines were caused by many cycles of working and heating

The copper-alloy is likely to have been subjected to many cycles of working and annealing (heating) to reduce the sheet metal to its final thickness (and shape). Significantly, there are differences in the content of sulphide within the copper alloy from one of the cauldrons, which suggest that the metal of the bowl and that of the band were probably refined to different levels or were from different sources.

Some of the results we have achieved so far are intriguing and much more revealing than expected given the condition of the material. Further analysis of the remaining cauldrons will not only provide further details of how the metal was processed and how the cauldrons were made but will help us build up a more complete picture of the deposit as a whole.

The Chiseldon cauldrons research project is supported by the Leverhulme Trust

Find out more about this research project

If you would like to leave a comment click on the title

Filed under: Archaeology, Chiseldon cauldrons, Conservation, Research

One Response - Comments are closed.

  1. John Winterburn says:

    Some great images , thanks for posting these.

    Like

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 11,515 other followers

Categories

Follow @britishmuseum on Twitter

British Museum on Instagram

Hipsters beware! Those who paid Peter the Great's beard tax got a token as proof!

Explore the history of money in our Citi Money Gallery. Every #PayDay we're sharing a #MoneyFact! Born #onthisday in 58 BC: Livia Drusilla (Julia Augusta), wife of Augustus, mother of Tiberius
#history Charlemagne died #onthisday in 814. Very few of his surviving coins carry the imperial title – this gold solidus from the port of Dorestad describes him as king of the Franks and the Lombards
#history #coins #Charlemagne 'We are all fools in love' – Jane Austen's Pride and Prejudice was first published #onthisday in 1813.  Here's a wood-engraved illustration by Helen Binyon from 1938
#illustration #JaneAusten #books #history English artist Samuel Palmer was born #onthisday in 1805. He made this painting late in his career, when his critical reputation was higher than it had ever been. It is a representation of late evening: quiet and meditative, even idyllic. The sun has already set, leaving a purplish glow in the sky; the moon and the evening star can be seen in the clear sky above. There is a sense of the chill of early autumn in the colours. Dark-coloured birds, probably rooks, are circling in the sky above the castle on the river, while a single white bird flies across the river.
London, about 1878.
#history #art #watercolour #painting Born #onthisday in 1832: Lewis Carroll, author of Alice's Adventures in Wonderland. This illustration from the final chapter shows Alice upsetting the twelve creatures of the jury 
#history #illustration #AliceinWonderland #books
Follow

Get every new post delivered to your Inbox.

Join 11,515 other followers

%d bloggers like this: